Gerar link Facebook X Pinterest E-mail Outros aplicativos janeiro 17, 2023 IDENTIDADE DE GRACELI.G* = ] =f [x] = A0 / [n! / pk] = [A [n! / pk] COS [G* = ] + B SEN [n! / pk] [G* = ] = Gerar link Facebook X Pinterest E-mail Outros aplicativos Comentários
janeiro 17, 2023 G [ n! / pk] [ G* = ] = G { f [ t ] } = [1 / n!] f [ t ] . [ n! / pk] [ G* = ] dt = G [ δ n! / pk] [ G* = ] = G { f [ t ] } = [1 / n!] f [ t ] . [ δ n! / pk] [ G* = ] dt= G [ ω n! / pk] [ G* = ] = G { f [ t ] } = [1 / n!] f [ t ] . ω [ n! / pk] [ G* = ] dt ω= Leia mais
janeiro 16, 2023 G* = ] U [x] = [ G* = ] [u] du G* = ] [x] = d / dx U [x] função de Heaviside com elementos de Graceli. [ G* = ]. [ G* = ]. {\displaystyle v(t)=R*i(t)+{\frac {1}{C}}*(q0+\int \limits _{0}^{\infty }i(\tau )d\tau )} [ G* = ]. Aplicando-se transformada de Laplace {\displaystyle R*{\mathcal {L}}\{i(t)\}+{\frac {1}{C}}{\mathcal {L}}\{\int \limits _{0}^{t}i(\tau )d\tau \}={\mathcal {L}}\{v(t)\}} [ G* = ]. {\displaystyle R*I(s)+{\frac {1}{C}}*{\frac {I(s)}{s}}=v0[{\frac {e^{-as}}{s}}-{\frac {e^{-bs}}{s}}]} [ G* = ]. {\displaystyle I(s)={\frac {v0C}{RCs+1}}*[e^{-as}-e^{-bs}]={\frac {v0}{R}}*{\frac {1}{s+{\frac {1}{RC}}}}*[e^{-as}-e^{-bs}]} [ G* = ]. Leia mais
Comentários
Postar um comentário