[ n! / pk] [ G* = ] dt = VARIÁVEIS DE GRACELI. [ n! / pk] [ G* = ] dt = {\displaystyle {\vec {x}}(t)=A(\cos(\omega t+\alpha ){\vec {i}}+\sin(\omega t+\alpha ){\vec {j}})\,} [ n! / pk] [ G* = ] dt = {\displaystyle A\cdot \cos(\omega t+\theta )=A\cdot {\frac {e^{i(\omega t+\theta )}+e^{-i(\omega t+\theta )}}{2}},} [ 1 [ n! / pk] [ G* = ] dt = {\displaystyle {\begin{aligned}A\cdot \cos(\omega t+\theta )&=\operatorname {Re} \left\{A\cdot e^{i(\omega t+\theta )}\right\}\\&=\operatorname {Re} \left\{Ae^{i\theta }\cdot e^{i\omega t}\right\}.\end{aligned}}} [ n! / pk] [ G* = ] dt =